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Driving Applications: Lifelong Learning Machines (L2M)

*Today’s learning paradigms are stagnant :
short-term, non-adaptive.
*Over-reliant on labeled-data.
*Can’t apply past knowledge to new domains.
*Can’t start learning until task is presented.

Our approach: Lifelong visual learning,

* Continual, adaptive learning.

* Adjust to new domains, new tasks, new environments.

*Leverage massive unlabeled data sets of images/video.
*Learn to see and act without labels via surrogate tasks.
*Predict consequences of own actions.

*Learn before task is presented; prepare for the future.

Demonstration Application:
Intelligent Visual Seeking

* Our demonstration application: Intelligent Visual Seeking
* Use THOR virtual environment (see images below).
« Compete in Allen Institute Visual Challenge (AIVC).
* Leverage all five core technologies for superior results.

* Phase I: Focus on core technologies with real images/video.
* Phase Il: State-of-the-art on AIVC intelligent visual seeking.
 Technology will have broad impact across core vision,
robotics, and machine learning applications.

Status quo:

Learning and inference with
“disembodied” snapshots.

On the horizon:

Visual intelligence in the W)
context of acting and igas 85
moving in the world. SEe= g8
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Learning by
colorization

Core research directions: new capabilities

Learning to explore new environments Embodied visual representations
“‘how | move” & “how my visual surroundings change”

Adversarial self-play

recognition

task predefined Well defined game rules No given game rule

Unlabeled video @ @

Train by self-play Can’t do self-play
Can we invent a
game rule?

task unfolds dynamically

Ego-motion motor signals

Learning efficient “looking around” policies Actively moving to recognize

Lifelong mixture of experts
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What motions or manipulations are needed?

Self-supervision by proxy tasks

Key intuition: forcing a machine to “acknowledge” structure in the visual world helps learn meaningful representations inside the machine
Deep learning, where representations are learned end-to-end jointly with the task solver, is particularly suited to this.

We aim to design proxy tasks that would be tied to such semantically meaningful structure

“Self-supervision”: the task is ostensibly still supervised but the supervisory signal is naturally embedded in the images themselves; no need for
designing human-driven labels and annotations.

Convolutional NN
trained to recover color
from gray-scale images;
No human-made labels!
E—
Can use any color
Images for training

Intuition: we rely on semantics to judge distance
Compute approximate depth from motion in video
hen train a neural network to predict this depth
from a single image.

Use this self-supervised pre-trained network as a starting point for
fine-tuning on new tasks like semantic segmentation and improved

wr

depth estimation. e

Learning by depth

estimation

Self-supervised
pre-training
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